Optogenetic analysis of neuronal excitability during global ischemia reveals selective deficits in sensory processing following reperfusion in mouse cortex.

نویسندگان

  • Shangbin Chen
  • Majid H Mohajerani
  • Yicheng Xie
  • Timothy H Murphy
چکیده

We have developed an approach to directly probe neuronal excitability during the period beginning with induction of global ischemia and extending after reperfusion using transgenic mice expressing channelrhodopsin-2 (ChR2) to activate deep layer cortical neurons independent of synaptic or sensory stimulation. Spontaneous, ChR2, or forepaw stimulation-evoked electroencephalogram (EEG) or local field potential (LFP) records were collected from the somatosensory cortex. Within 20 s of ischemia, a >90% depression of spontaneous 0.3-3 Hz EEG and LFP power was detected. Ischemic depolarization followed EEG depression with a ∼2 min delay. Surprisingly, neuronal excitability, as assessed by the ChR2-mediated EEG response, was intact during the period of strong spontaneous EEG suppression and actually increased before ischemic depolarization. In contrast, a decrease in the somatosensory-evoked potential (forepaw-evoked potential, reflecting cortical synaptic transmission) was coincident with the EEG suppression. After 5 min of ischemia, the animal was reperfused, and the ChR2-mediated response mostly recovered within 30 min (>80% of preischemia value). However, the recovery of the somatosensory-evoked potential was significantly delayed compared with the ChR2-mediated response (<40% of preischemia value at 60 min). By assessing intrinsic optical signals in combination with EEG, we found that neuronal excitability approached minimal values when the spreading ischemic depolarization wave propagated to the ChR2-stimulated cortex. Our results indicate that the ChR2-mediated EEG/LFP response recovers much faster than sensory-evoked EEG/LFP activity in vivo following ischemia and reperfusion, defining a period where excitable but synaptically silent neurons are present.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sulfur dioxide reduces hippocampal cells death and improves learning and memory deficits in rat model of transient global ischemia/reperfusion

Objective(s): According to recent the findings, sulfur dioxide (SO2) is produced by the cardiovascular system, influencing some major biological processes. Based on previous research, SO2 exhibits antioxidant effects and inhibits apoptosis following cardiac ischemia/reperfusion. Therefore, the objective of the current study was to examine the neuroprotective impact of SO2 following global cereb...

متن کامل

Combination Therapy with A1 Receptor Agonist and Vitamin C Improved Working Memory in a Mouse Model of Global Ischemia-Reperfusion

Introduction: Stroke is one of the most important reasons of death. Hence, trials to prevent or lessen the complications originated by stroke are a goal of public health worldwide. The ischemia-reperfusion causes hypoxia, hypoglycemia and incomplete repel of metabolic waste products and leads to accumulation of free radicals triggering neuronal death. The A1 adenosine receptoras an endogenous l...

متن کامل

L-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat

Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all.  Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...

متن کامل

Effect of Coenzyme Q10 (ubiquinone) on hippocampal CA1 pyramidal cells following transient global ischemia/reperfusion in male wistar rat

Ischemia/Reperfusion (I/R)-induced cerebral injury has been reported as a leading cause of deathand long-term disabilities. Hippocampus is an area which is more sensitive to be affected by I/Rand hypoxic conditions. Coenzyme Q10 is a strong antioxidant which plays a role in membranestabilization. This study aims to investigate the possible role of CoQ10 in ameliorating thehistomorphological cha...

متن کامل

Obestatin inhibits apoptosis and astrogliosis of hippocampal neurons following global cerebral ischemia reperfusion via antioxidant and anti-inflammatory mechanisms

Objective(s): Obestatin is a newly discovered peptide with antioxidant activities in different animal models. Recent studies have shown that Obestatin inhibits apoptosis following cardiac ischemia/reperfusion injury. Brain ischemia/reperfusion induces irreversible damage especially in the hippocampus area. This study aimed at examining the protective impact of Obestati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 39  شماره 

صفحات  -

تاریخ انتشار 2012